NATIONAL BUSINESS AND TECHNICAL EXAMINATIONS BOARD
 NBC/NTC EXAMINATION
 MATHEMATICS

1(a) Solve for x in $8^{3 x} \times 8^{-1}=32$
(b) Simplifying without using tables, $\frac{\log 27}{\log 3}$

Solution
(a) $\begin{aligned} & 2^{3(3 x)} \times 2^{3(-1)}=2^{5} \\ & \Rightarrow 3(3 x)-3=5\end{aligned}$
$9 \mathrm{x}-3=5$
$\therefore \mathrm{x}=8 / 9$
(b) $\frac{\log 27}{\log 3}=\frac{\log 3^{3}}{\log 3}=\frac{3 \log 3}{\log 3}=3$

2(a) The $6^{\text {th }}$ term of a G.P is 1215 . If the common ratio is 3 ; find its $3^{\text {rd }}$ term.
(b) ABC is a triangle with $\mathrm{BC}=8.4 \mathrm{~cm}, \angle \mathrm{ADC}=90^{\circ}$ and area $40.16 \mathrm{~cm}^{2}$. Find $/ \mathrm{AD} /$.

Solution
(a) $\quad \mathrm{T}_{6}=\mathrm{ar}^{\mathrm{n}-1} \Rightarrow \mathrm{a}(3)^{5}=1215$

$$
a=\frac{1215}{243} \quad=\quad 5
$$

$\therefore 3^{\text {rd }}$ term $=5 \times 3^{2}=45$
(b) Area of a triangle $=1 / 2 \times 8.4 \times / \mathrm{AD} /$
$=40.16 \mathrm{~cm}^{2}$

$$
\begin{aligned}
& \therefore / \mathrm{AD} /=\frac{40.16 \times 2}{8.4 \times 1} \\
& =9.56 \mathrm{~cm}
\end{aligned}
$$

3(a) Simplify $\frac{0.0054 \times 8.19}{0.000243}$, leaving your answer in standard form.
(b) A length of 8.85 m is increased to 9.37 m . Calculate the increase.

Solution

(a) $\frac{54 \times 10^{-3} \times 819 \times 10^{-2}}{243 \times 10^{-5}}$

$$
=1.82 \times 10^{2}
$$

$$
\text { or } \frac{0.054 \times 819}{0.00243}=\frac{0.44226}{0.00243}=182
$$

$$
=1.82 \times 10^{2}
$$

(b) increase in length $=(9.37-8.85) \mathrm{m}$

$$
=0.52 \mathrm{~m}
$$

percentage increase $=\underline{0.52} \times 100$

$$
=5.876 \%=5.88 \% \text { approx }
$$

4. 65 of the workers in a certain company in Lagos were interviewed about the means of transportation to work on a particular day. Each of them used one or more of the means shown on the Venn diagram below.

Given that 37 workers used Bike and 20 used Bus, find
(a) x
(b) the number of workers who used cars only

Solution

4(a) $\mathrm{x}+\mathrm{x}+5+8=37$
$2 \mathrm{x}=24$

GET MORE ON SCHOOL PORTAL NG (https://schoolportalng.com)

$\therefore \mathrm{x} \quad=12$
(b) $y=20-(5+8+3)=4$
$n($ Bike \cup Bus $)=12+12+5+8+3+4=44$
$n($ cars only $)=65-44$

$$
=21
$$

5. The centre of the circle ABC is O . If its radius is 8 cm and $<\mathrm{ACB}=40^{\circ}$, Calculate the length of the
(a)) Chord AB
(b) Perpendicular OM

Solution
$\angle \mathrm{AOB}=2 \angle \mathrm{ABC}=2 \times 40^{\circ}=80^{\circ}$
$\angle \mathrm{BOM}=1 / 2$ of $80^{\circ}=40^{\circ}$
Considering triangle OMB ,

$$
\begin{aligned}
& / \mathrm{MB} /=8 \sin 40^{\circ} \\
& \text { or } 8 \cos 50^{\circ}=5.142 \mathrm{~cm}
\end{aligned}
$$

Length of the chord $A B=2 / M B /=2 \times 5.142$

$$
=10.28 \mathrm{~cm}=10.3 \mathrm{~cm} \text { approx }
$$

(b) $/ \mathrm{OM} /=8 \operatorname{Cos} 40^{\circ}$ or $8 \operatorname{Sin} 50^{\circ}$

$$
=6.128 \mathrm{~cm}=6.13 \mathrm{~cm}=6.1 \mathrm{~cm}
$$

ALITER: Using Pythagoras' rule
$\mathrm{OM}=\sqrt{ }(\mathrm{OB})^{2}-(\mathrm{MB})^{2}=6.1 \mathrm{~cm}$
6(a) Find the value of a and b in the figure below

(b) Five years ago, a father was twice as old as his son. In 4 years' time, the sum of their ages will be 78. Find their present ages.

Solution(a) $\mathrm{b}=180^{\circ}-120^{\circ}=60^{\circ}$ (opposite angles in cyclic quad are supplementary) Considering $\triangle \mathrm{ACD}$,

$$
\begin{aligned}
& \mathrm{a}+\mathrm{b}+80^{\circ}=180^{\circ}(\angle \mathrm{s} \text { in a } \triangle) \\
& \therefore \mathrm{a}=180^{\circ}-80^{\circ}-60^{\circ}=40^{\circ}
\end{aligned}
$$

(b) Let the present ages be son, x yrs, father y yrs, then 5 years ago, we have

$$
\begin{align*}
y-5 & =2(x-5) \\
\Rightarrow 2 x & -y=5 \tag{1}
\end{align*}
$$

in 4 years' time, we have
$(x+4)+(y+4)=78$
$\Rightarrow x+y=70$ \qquad
From (1) and (2), we have, $x=25$ and $y=45$
\therefore their present ages are son $=25$ yrs, father $=45$ years
(a) ALITER

5 year ago if son is y year's old father was 2 y years old. In 4 years time, son will be $(y+5+4) y r s$
father $=(2 y+5+4) y r s$
which gives $\mathrm{y}+9+2 \mathrm{y}+8=78 ; \mathrm{y}=20$
the present ages are $y+5=25 y r s$ and $2 y+5=45 y r s$ for the son and father respectively.
7. The bearings of points P and Q from 045° and 120° respectively. If the distance AP is 80 km and AQ is 50 km , calculate the:
(a)) distance between P and Q to 3 significant figures
(b) bearing of Q from P , to the nearest degree.
(c)) how far east of A is Q ?

Solution

(a)

Correct diagram with at least three of $50 \mathrm{~km}, 80 \mathrm{~km}, 45^{\circ}, 60^{\circ}$ or 120° shown $\angle \mathrm{PAQ}=75^{\circ}$
$(\mathrm{PQ})^{2}=80^{2}+50^{2}-(50) \cos 75^{\circ}=6829.6$
$\therefore \mathrm{PQ}=\sqrt{6829.6}=82.6 \mathrm{~km}$

Solution

7(b) $\quad \operatorname{Sin} \angle \mathrm{APQ}=\underline{50 \times \sin 75^{\circ}}=0.5847$

$$
82.6
$$

$\angle \mathrm{APQ}=\sin ^{-1} 0.5847=35.78^{\circ}$
$<\mathrm{QPN}=45^{\circ}-35.78^{\circ}=9.22^{\circ}$
The bearing of Q from $\mathrm{P}=180^{\circ}+9.22^{\circ}$
$=189^{\circ}$ (to the nearest degree)
$\therefore<\mathrm{QAM}=30^{\circ}$
(c) A is $50 \times \operatorname{Cos} 30^{\circ}=43.3 \mathrm{~km}$ east of Q

8(a) The table below shows the scores of a group of 40 students in a test.

Score (x)	1	2	3	4	5	6	7	8	9	10
Frequency (f)	3	4	5	7	8	6	3	2	1	1

Find the (i) mode, (ii) median and (iii) mean
(b) The $2^{\text {nd }}$ and $4^{\text {th }}$ terms of a G.P. are 10 and 40 respectively. Find the
(i) common ratio
(ii) first term
(iii) $8^{\text {th }}$ term of the series

Solution
(a) (i) mode $=5$
(ii) median $=\frac{5+5}{2}=5$
(iii) $\quad \Sigma \mathrm{fx}=3+8+15+28+40+36+21+16+9+10$
$=186$
mean $=\frac{186}{40}=4.65$
(b) $\quad \mathrm{ar}^{2-1}=10=\mathrm{ar}=10$
$\mathrm{ar}^{4-1}=40=\mathrm{ar}^{3}=40$
$\Rightarrow \mathrm{r}^{2}=\frac{40}{10}=4$
(i) $\quad \therefore \mathrm{r}= \pm 2, \mathrm{r}=2$ or -2
(ii) Hence $2 \mathrm{a}= \pm 10 \Rightarrow \mathrm{a}= \pm 5$
(iii) $\mathrm{T}_{8}= \pm 5 \times 2^{7}=640$

GET MORE ON SCHOOL PORTAL NG (https://schoolportalng.com)

9 Using a ruler and a pair of compasses only construct:
(a) A triangle $A B C$ such that $/ A B /=9 \mathrm{~cm}$,
$\angle \mathrm{ABC}=60^{\circ}$ and $\angle \mathrm{ACB}=45^{\circ}$.
(b) (i) Construct the locus l_{l} of points 4.5 cm from A .
(ii) Construct the locus l_{2} of points equidistant from B and C to intersect l_{1} at x_{1} and x_{2} measure $/ \mathrm{x}_{1} \mathrm{X}_{2} /$.

Solution
(a) Drawing a side 9 cm long constructing angle 60°, angle 45° measuring angle $\mathrm{BAC}=76^{\circ}$ completing the triangle ABC .

(b) (i) Constructing $l_{l} 4.5 \mathrm{~cm}$ from A
(ii) Constructing l_{2} of points equidistant from B and C to intersect l_{l} at x_{1} and x_{2}
measuring $/ \mathrm{x}_{1} \mathrm{x}_{2} /=8.5 \mathrm{~cm} ;(\pm 0.1 \mathrm{~cm})$ or its equivalent.
10(a) A bucket is 28 cm in diameter at the top, 18 cm in diameter at the bottom and 20 cm deep. Find the capacity, in litres, of the bucket (take $\pi=3.142$)
(b) The hypotenuse of a right angled triangle is 17 cm and one of the angles is 43°, find the (i) third angle
(ii) side opposite the smallest angle.

Solution

(a) Let the height of the smaller cone be h cm then, we have $\frac{h}{20+h}=\frac{9}{14}$
$\Rightarrow 14 \mathrm{~h}=180+9 \mathrm{~h}$
$\therefore \mathrm{h}=36$

Volume of the small cone $=\frac{1}{3} \times 3.142 \times 9^{2} \times 36$
$=3054.02 \mathrm{~cm}^{3}$
Volume of the big cone $=\frac{1}{3} \times 3.142 \times 14^{2} \times 56$
$=11495.53 \mathrm{~cm}^{3}$
Volume of the bucket in litres $=11495.53-3054.02$
$=8441.51 \mathrm{~cm}^{3}$
Capacity of the bucket in litres $=8.44$ litres or 8.4 litres.
We can also get the volume if we use $\pi\left(r^{2} H-r^{2} h\right)$

$$
3
$$

Substituting for R, H, r and h, we get 8.44 litres

$$
3^{\mathrm{rd}} \text { angle } \emptyset=180^{\circ}-\left(90^{\circ}+43^{\circ}\right)=47^{\prime}
$$

AC is opposite the smallest angle-
Hence $\mathrm{AC}=17 \mathrm{x} \operatorname{Sin} 43^{\circ}$
or $\mathrm{AC}=17 \times \operatorname{Cos} 47^{\circ}$
$=11.594 \mathrm{~cm}$
or $=11.59 \mathrm{~cm}$
11(a) The sum to nth term of an AP is given by
$\mathrm{S}=\underline{\mathrm{n}}[\mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$, where $\mathrm{a}=$ first term
2
d = common difference
(i) make d the subject of the formula
(ii) Hence calculate the common difference of an AP whose sum is $338, \mathrm{n}=13$ and $\mathrm{a}=5$.
(b) The angles of a polygon are $(x-10)^{0}, x^{0}, x^{0},(x+20)^{\circ}$ and $(x+30)^{\circ}$. Find the value of x^{0}.

Solution

$$
\mathrm{S}=\underline{\mathrm{n}}(\mathrm{a}+(\mathrm{n}-1) \mathrm{d})
$$

2
Removing the fraction and brackets to get $2 \mathrm{~s}=\mathrm{na}+\mathrm{n}^{2} \mathrm{~d}-\mathrm{nd}$
Isolating d, we get
$\mathrm{d}\left(\mathrm{n}^{2}-\mathrm{n}\right)=2 \mathrm{~s}-\mathrm{na}$
$\therefore \mathrm{d}=\frac{2 s-n a}{n^{2}-n}$
(ii) $\mathrm{d}=\frac{2 s-n a}{n^{2}-n}=\frac{2(338)-13(5)}{13^{2}-13}$

$$
=\frac{611}{156}=3.92
$$

(b) The polygon has 5 sides

$$
\begin{aligned}
& \text { sum of interior angles }=3 \times 180^{\circ}=540^{\circ} \\
& (x-10)^{\circ}+x^{\circ}+x^{\circ}+(x+20)^{\circ}+(x+30)^{\circ}=540^{\circ} \\
& 5 x+40^{\circ}=540^{\circ} \\
& 5 x=500^{\circ} \\
& \therefore x=100^{\circ}
\end{aligned}
$$

12(a) An article costing $\# 32.50$ is sold for a gain of $13 \frac{1}{2}$. Find the selling price.
(b) Find the simple interest on $\# 4500.00$ in $2 \frac{1}{2}$ years at 4% per annum.
(c) A businessman borrowed $\$ 200,000$ from a bank for 3 years at 5\% compound interest.
(i) Calculate the interest on the loan at the end of the period.
(ii) If he repays $\$ 230,000$ at the end of the 3 years, how much does he still owe?

Solution

(a) Cost price of the article : $100 \%=\# 32.50$

Selling price of the article $1131 / 2 \%=\$ 113.5 \times 32.50$
100

$$
=\mathrm{\#} 36.89
$$

(b) \quad S.I $=\frac{\mathrm{PTR}}{100}=\frac{4500 \times 5 \times 4}{100 \times 2}$

$$
=\neq 450.00
$$

(c) Interest at the end of $1^{\text {st }}$ year $=\underline{200,000 \times 1 \times 5}$
= $\# 10,000.00$
Interest at the end of $2^{\text {nd }}$ year $=\frac{210,000 \times 1 \times 5}{100}$

$$
=10,500.00
$$

Interest at the end of $3^{\text {rd }}$ year $=\underline{220,500 \times 1 \times 5}$
= $\# 11,025.00$
(i) Total interest owed at the end of $3{ }^{\text {rd }}$ year

GET MORE ON SCHOOL PORTAL NG (https://schoolportalng.com)

$$
=\# 200,000\left(1+\frac{5}{100}\right)^{3}=\# 231,525.00
$$

Total interest $=\mathrm{\#}(231,525-200,000)=\mathrm{A} 31,525.00$

ALITER

(i) Total interest $=\mathrm{A}(10,000+10,500+11,025)=\mathrm{\#} 31,525.00$
(ii) Amount still owed $=(231,525-230,000)$

$$
=\mathrm{\#} 1,525.00
$$

13(a) A trader allows a discount of $33 \frac{1}{3} \%$ on his marked prices. What should be the marked prices of article he wishes to receive $\# 500.00$?
(b) The prices of kerosene per litre on the first week of each of the 12 months of the year are as given in the table below.

Month	Jan.	Feb.	March	April	May	June	July	Aug.	Sept	Oct	Nov	Dec.
Price	18	21	25	30	40	52	48	50	55	43	26	18

Find the three month moving averages for the period.

Solution

(a) Selling price less discount: $662 / 3 \%=\$ 500$

Marked price: $100 \%=(\underline{100} \times 500$
$662 / 3$

$$
=749.96=\# 750 \text { approx }
$$

(b) Moving averages: $18+21+25=21.33$ 3
$\frac{21+25+30}{3}=25.33, \frac{25+30+40}{3}=31.67$
$\frac{30+40+52}{3}=40.67, \frac{40+52+48}{3}=46.67$
$\frac{52+48+50}{3}=50.00, \frac{48+50+55}{3}=51$
$\frac{50+55+43}{3}=49.33, \frac{55+43+26}{3}=41.33$
$\frac{43+26+18}{3}=29.00$
14(a) A man's salary is $298,886.40$ per annum. Before receiving his salary, the employer makes the following deductions of the salary less personal allowance

Income Tax \qquad
Federal Housing Scheme ... $2 \frac{1}{2} \%$, and
union dues \qquad .2\%
If his annual personal allowances is $\# 108,110.40$
Calculate:
(i) his monthly income tax
(ii) the net monthly take home pay.
(b) A bankrupt's assets realize $\# 5000.00$ and his liabilities are $\# 8000.00$
(i) What dividend will he pay?
(ii) How much will be paid to a creditor for $\mathrm{\#} 600.00$?

Solution

(a) Salary - Personal allowances $=\#(298,886.40-108,110.40)$

$$
\text { = } \# 190,776.00
$$

(i) Monthly income tax $=\frac{190,776}{100} \times \frac{1}{12}$

$$
=\# 158.98
$$

(ii) Gross monthly salary $=\mathbf{\# 2 9 8 , 8 8 6 . 4}$

$$
12
$$

$$
=\mathrm{N} 24,907.20
$$

monthly deductions: FHS: 2% of $24,907.20$
= $\# 622.68$
monthly union due $=2 \%$ of $\mathrm{A} 24,907.20$

$$
=\text { \# } \# 498.14
$$

monthly tax deduction: 1% of $\# 24907.21$

$$
=\mathrm{N} 249.07
$$

monthly total deductions $=\#(622.68+498.14+249.07)$
= \#1369.89

Net monthly pay $=(24,907.40-1369.89)$

$$
=\mathrm{\#} 23,537.31
$$

(b) (i) Dividend $=\# 5,000 \times 100 \mathrm{k}$

$$
\# 8,000
$$

$$
=63 \mathrm{k} \text { in } \#
$$

(ii) To a creditor for $\# 600$ he pays $\underline{63} \mathrm{x} \# 600$

$$
100
$$

= \#378.00

15(a) Find the weighted mean of $15,20,25,30$, if they are assigned weightings of $2,1,3,4$ respectively.
(b) A man bought 23 crates of bottled drink at $\# 310.00$ per crate. There were 24 bottles per crate and each bottle was sold for $\# 15$. If two bottles per crate got broken during sales, calculate the following:
(i) cost price of the 23 crates
(ii) percentage profit per crate.

Solution
(a) weighted mean $=(2 \times 15)+(1 \times 20)+(3 \times 25)+(4 \times 30)$

$$
2+1+3+4
$$

$$
=\frac{275}{10}=27.5
$$

(b) (i) Cost price of 23 crates $=23 \times \mathrm{A} 310$

$$
=\# 7130.00
$$

No of bottles sold in a crate $=22$
Selling price of a crate $=22 \times \# 15=\# 310.00$
Profit on a crate $=\# 330.00-\# 310.00$

$$
=\mathrm{A} 20
$$

(ii) Percentage profit per crate

$$
\begin{aligned}
& =\frac{20}{310} \times 100 \\
& =6.45 \%=6.5 \% \text { approx. }
\end{aligned}
$$

