GET MORE ON SCHOOL PORTAL NG (https://schoolportalng.com)

NATIONAL BUSINESS AND TECHNICAL EXAMINATIONS BOARD
 NBC/NTC EXAMINATION
 MATHEMATICS

1(a) Without tables, simplify

$$
\frac{2 \frac{1}{5} \times 5 \frac{5}{6}}{6 \frac{5}{12}}
$$

(b) Evaluate $\log _{3} 81+\log _{3} 27-\log _{3} 243$

Solution
$2 \frac{1}{5} \times 5 \frac{5}{6}$
$6 \frac{5}{12}$
Simplifying the denominator and the numerator, we have

$$
\begin{aligned}
& =\frac{\frac{11}{5} \times \frac{35}{6}}{\frac{77}{2}}=\frac{11}{5} \times \frac{35}{6} \div \frac{77}{12} \\
& =\frac{11}{5} \times \frac{35}{6} \times \frac{12}{77} \\
& =2
\end{aligned}
$$

1(b) $\log _{3} 81+\log _{3} 27-\log _{3} 243$ using the similar root power property of the logarithm,

$$
\text { we have } \begin{aligned}
\log _{3}\left(\frac{81 \times 27}{243}\right) & =\log _{3}\left(\frac{3^{4} \times 3^{3}}{3^{5}}\right)=\log _{3}\left(\frac{3^{7}}{3^{5}}\right)=\log _{3} 9 \\
& =\log _{3} 3^{2}=2 \log _{3} 3=2
\end{aligned}
$$

2(a) Ade, Eyo and Nuhu contributed $\mathrm{N} 50,000$, $\mathrm{N} 75,000$ and $\mathrm{N} 100,000$ respectively to a joint business venture. Their profit is to be shared in the ratio of their contributions. If they made a profit of $\mathbf{N} 135,000$ how much will each receive?
(b) Solve the following linear equation: $10(3 x-2)=7(5 x-4)$

Solution

(a) Since Ade, Eyo and Nuhu contributed $\mathrm{N} 50,000, \mathrm{~N} 75,000$ and $\mathrm{N} 100,000$, the ratio of their contribution will be $2: 3: 4$
Since Nuhu contributed twice the contribution of Ade and their total contributions were $\mathrm{N} 225,000$
So the sum of their ratio is $2+3+4=9$.
When they made a profit of $\mathbf{N} 135,000$, based on their contributions;
Ade will receive $\frac{2}{9} \times 135,000$

GET MORE ON SCHOOL PORTAL NG

$$
=\mathrm{N} 30,000.00
$$

Eyo will receive $\frac{3}{9} \times \mathrm{N} 135,000$

$$
=\mathrm{N} 45,000.00
$$

Nuhu will receive $\frac{4}{9} \times 135,000$

$$
=\mathrm{N} 60,000.00
$$

(b) $10(3 x-2)=7(5 x-4)$

Multiplying the operations in the LHS and RHS, removing brackets we have
$30 x-20=35 x-28$
collecting like terms, we have

$$
\begin{aligned}
& 30 x-35 x=-28+20 \\
& -5 x=-8
\end{aligned}
$$

Dividing by the coefficient of x , which is -5 , we have for both sides

$$
\begin{aligned}
& \frac{-5 x}{-5}=\frac{-8}{-5} \\
& \therefore x=1 \frac{3}{5}
\end{aligned}
$$

3. If $\xi=\{1,2,3,4,5,6,7,8,9,10,11,12, \ldots, 15\}$
$A=\{$ numbers less than 7$\}$
$B=\{$ multiples of 3$\}$ are subsets of ξ
(a) List the members of A and B
(b) Show the above sets in a Venn diagram
(c) List the elements of (i) $\mathrm{A}^{1} \cap \mathrm{~B}$ (ii) $\mathrm{A} \cup \mathrm{B}^{1}$

Solution
(a) $\mathrm{A}=\{1,2,3,4,5,6\}$
$B=\{3,6,9,12,15\}$
(b)

GET MORE ON SCHOOL PORTAL NG (https://schoolportalng.com)

(c) (i) $\mathrm{A}^{1}=\{7,8,9,10,11,12,13,14,15\}$
$B=\{3,6,9,12,15\}$
$\therefore A^{1} \cap B=\{9,12,15\}$
(ii) $\quad \mathrm{B}^{1}=\{1,2,4,5,7,8,10,11,13,14\}$
$\mathrm{A}=\{1,2,3,4,5,6\}$
$\therefore \mathrm{A} \cup \mathrm{B}^{1}=\{1,2,3,4,5,6,7,8,10,11,13,14\}$
4. A chord XY of a circle of radius 7 cm , subtends an angle of 120° at the centre. Find the:
(i) length of arc XY
(ii) area of the major segment which XY cuts off, and
(iii) area of the sector XOY.
(i) length of $\operatorname{arc} \mathrm{XY}=\frac{120^{\circ}}{360^{\circ}} \times 2 \times \pi \times 7=14.66 \mathrm{~cm}$
($\pi=3.142$)
(ii) Area of the major segment which XY cuts off $=\frac{120^{\circ}}{360^{\circ}} \times 2 \pi \times 7^{2}$

$$
=102.64 \mathrm{~cm}^{2}
$$

Area of $\triangle X O Y$
$=1 / 2 \times 7 \times 7 \times \sin 120^{\circ}$
$=1 / 2 \times 49 \times 0.8660$
$=21.22 \mathrm{~cm}^{2}$
Therefore area of the major segment which XY cuts off
$=102.64 \mathrm{~cm}^{2}+21.22 \mathrm{~cm}^{2}$
$=123.86 \mathrm{~cm}^{2}$

GET MORE ON SCHOOL PORTAL NG (https://schoolportalng.com)

(iii) Area of the sector XOY

$$
\begin{aligned}
& =\frac{120}{360} \times \pi \times(7 \mathrm{~cm})^{2} \\
& =51.32 \mathrm{~cm}^{2}
\end{aligned}
$$

5. The scores in an ICT Quiz is given below

Score (x)	2	3	4	5	6	7	8	9	10
Frequency(f)	2	2	4	7	8	3	4	5	3

Calculate:
(i) total number of students
(ii) mean scores
(iii) median scores, and
(iv) modal scores

Solution
(i) Total number of students

$$
2+2+4+7+8+3+4+5+3=38
$$

(ii) \quad Mean $=\frac{\Sigma \mathrm{fx}}{\mathrm{N}}$ or $\frac{\Sigma \mathrm{fx}}{\Sigma \mathrm{f}}$

$$
\begin{aligned}
& \Sigma \mathrm{f}=\mathrm{N}=38 \\
& \Sigma \mathrm{fx}=(2 \times 2)+(3 \times 2)+(4 \times 4)+(5 \times 7)+(6 \times 8)+(7 \times 3)+(8 \times 4)+ \\
& \quad(9 \times 5)+(10 \times 3)=237 \\
& \therefore \text { mean }=\frac{237}{38}=6.24
\end{aligned}
$$

(iii) Median $=\frac{6+6}{2}$

$$
=6
$$

(iv) Modal scores 6
6.(a) After examining 300 defective items, a factory quality controller came up with the following report. Defects in finishing 90, defects in hardness 150 and defects in dimension 159. Defects in hardness and finishing 30, defects in both finishing and dimension 24 and defects in both hardness and dimension 60 . All three defects 15.
(i) Use a Venn diagram to illustrate this report
(ii) Find how many items have only one defect.
(iii) Find how many items have only two defects.
(iv) Calculate the probability of items with only two defects.
(a) If $213_{\mathrm{n}}=117_{\text {seven }}$, find n .

GET MORE ON SCHOOL PORTAL NG (https://schoolportalng.com)

Solution

There are three (3) intersecting circles. That is $\mathrm{F} \cap \mathrm{H} \cap \mathrm{D}=15$
(ii) $\mathrm{F}: \mathrm{x}+9+15+15=90$

$$
\therefore \mathrm{x}=51
$$

H: $y+15+15+45=150$
$\therefore y=75$
D: $\mathrm{z}+9+15+45=159$
$\therefore \quad z=90$
(iii) The only two defects are $9+15+45=69$
(iv) The probability of only two defects will be

$$
\begin{aligned}
& =\frac{69}{300} \\
& =\frac{23}{100} \\
& =0.23
\end{aligned}
$$

6. $213_{\mathrm{n}}=117_{\text {seven }}$

$$
\begin{array}{ll}
2 \mathrm{xn}^{2}+1 \mathrm{xn}^{1}+3 \times \mathrm{n}^{0} & =1 \times 7^{2}+1 \times 7^{1}+7 \times 7^{0} \\
2 \mathrm{n}^{2}+\mathrm{n}+3 & =49+7+7 \\
2 \mathrm{n}^{2}+\mathrm{n}+3 & =63 \\
\therefore 2 \mathrm{n}^{2}+\mathrm{n}-60 & =0
\end{array}
$$

Therefore $n=-5.483$ or 4.983
$\therefore \mathrm{n}=5$

GET MORE ON SCHOOL PORTAL NG (https://schoolportalng.com)

7(a) The mass M of a sheet of metal varies jointly with its area A and its thickness
T. If a sheet of metal of area $250 \mathrm{~cm}^{2}$ and thickness of 1 mm has a mass of 200g:
(i) Find the formula which connects M, A and T
(ii) From the formula in (i) make A the subject of the formula
(iii) Hence find A when $\mathrm{M}=960 \mathrm{~g}$ and $\mathrm{T}=3 \mathrm{~mm}$
(b) A right pyramid of height 15 cm stands on a square base of sides 12 cm . Calculate the volume.

Solution

(i) Area of the metal sheet is length x width x thickness mass of the metal steel $200 \mathrm{~g}=\mathrm{kx} 250 \mathrm{~cm}^{2} \times 1 \mathrm{~mm}$
$\therefore 200=\mathrm{kx} 250 \mathrm{x} 1$
then $\mathrm{k}=4 / 5$
Therefore $\mathrm{M}=\mathrm{KAT}$
and this implies $\mathrm{M}=4 / 5 \mathrm{AT}$
ALITER
$200=\mathrm{K} \times 250 \times 0.1$
$\therefore \mathrm{K}=8$
and $\mathrm{M}=8 \mathrm{AT}$
(ii) $\quad \mathrm{M}=4 / 5 \mathrm{AT} \Rightarrow 5 \mathrm{M}=4 \mathrm{AT}$

$$
\therefore \mathrm{A}=\frac{5 \mathrm{M}}{4 \mathrm{~T}}
$$

(iii) $\mathrm{A}=5 \times \frac{960}{4} \times 3$
$\therefore \mathrm{A}=400 \mathrm{~cm}^{2}$
ALITER
$M=8 \mathrm{AT} \quad \Rightarrow \mathrm{A}=\underline{\mathrm{M}}$

$$
\begin{aligned}
\therefore A & =\frac{960}{8 \times} 0.3 \\
& =400 \mathrm{~cm}^{2}
\end{aligned}
$$

(b) Base area $=1 \times \mathrm{b}=12 \mathrm{~cm} \times 12 \mathrm{~cm}=144 \mathrm{~cm}^{2}$

Volume $=1 / 3 \times(12 \mathrm{~cm})^{2} \times 15 \mathrm{~cm}$
$=720 \mathrm{~cm}^{3}$

GET MORE ON SCHOOL PORTAL NG (https://schoolportalng.com)

8(a) Copy and complete the table for $y=2 x^{2}-3-6$

x	-3	-2	-1	0	1	2	3	4	5
y	18	8			-7				29

b) (i) Use your table to plot the graph of $y=2 x^{2}-3 x-6$. Use 2 cm to 1 unit on the x-axis and 2 cm to 5 units on the y -axis.
(ii) On the same axes, plot the graph of $2 y-5 x+10=0$
(b) Use your graphs to solve
(i) $2 \mathrm{x}^{2}-3 \mathrm{x}-6=0$
(ii) $2 \mathrm{x}^{2}-3 \mathrm{x}-6=1 / 2(5 \mathrm{x}-10)$
(iii) Find the range of values of x for which $y<0$.

GET MORE ON SCHOOL PORTAL NG (https://schoolportalng.com)

Solution

(a)

x	-3	-2	-1	0	1	2	3	4	5
y	21	8	-1	-6	-7	-4	3	14	29

(b)(i)
(ii)
(c) (i) $x=-1.1$ and $x=2.6 \quad(\pm 0.1)$
(ii) $\mathrm{x}=2.9$ and $\mathrm{x}=-0.2(\underline{+0.1)}$
(iii) The range: $-1.1<x<2.6$
$(\pm 0.1$ the boundaries)
9(a) Using a ruler and a pair of compasses only construct
(i) a triangle XYZ with $/ \mathrm{XY} /=8 \mathrm{~cm},<\mathrm{YXZ}=60^{\circ}$ and $\angle \mathrm{XYZ}=30^{\circ}$
(ii) the perpendicular ZT to meet XY at T .
(iii) the locus l_{l}, of points equidistant from ZY and XY
(b) If l_{l} and ZT intersect at S , measure /ST/.
(c) A fair die is rolled twice. Find the probability of:
(i) a sum greater or equal to 8
(ii) at least a four

Solution
(a)

GET MORE ON SCHOOL PORTAL NG (https://schoolportalng.com)

(b) $\quad \mathrm{ST}=1.7 \mathrm{~cm}(+0.1 \mathrm{~cm})$
(c)(i) $P($ sum greater than or equal to 8$)=\underline{15}$

$$
=5 / 12
$$

(ii) $\mathrm{P}($ at least a four $)=\frac{11}{36}$
10. An aircraft moves from a location $\mathrm{X}\left(28^{\circ} \mathrm{N}, 15^{\circ} \mathrm{E}\right)$ to another location $\mathrm{Y}\left(28^{0} \mathrm{~N}, 25^{\circ} \mathrm{W}\right)$ and then to location $\mathrm{Z}\left(32^{\circ} \mathrm{S}, 25^{\circ} \mathrm{W}\right)$. The movement from X and Y is along the parallel of latitude and that from Y to Z is along the meridian.
Calculate the:
(i) the radius of parallel of latitude $28^{0} \mathrm{~N}$
(ii) distance from X to Y
(iii) distance from Y to Z
(iv) total length of the journey from X to Z .
(v) average speed of the aircraft if the journey takes 15 hours.
(Take $\mathrm{R}=6400 \mathrm{~km}, \pi=3.142$)
Solution
(i) $r=6400 \operatorname{Cos} 28^{\circ}$

$$
=5650.56 \mathrm{~km}
$$

(ii) $\frac{40^{\circ}}{360^{\circ}} \times 2 \pi 6400 \times \operatorname{Cos} 28^{\circ}$

$$
=\frac{40^{\circ}}{360^{\circ}} \times 2 \pi 5650.56
$$

$$
=3945.35 \mathrm{~km}
$$

(iii) $\frac{60^{\circ}}{360^{\circ}} \times 2 \pi \times 6400$
$=6702.93 \mathrm{~km}$
(iv) Total length $=3945.35 \mathrm{~km}+6702.93 \mathrm{~km}$

$$
=10648.28 \mathrm{~km}
$$

(vi) Average speed $=\frac{10648.28}{15}$
$=709.89 \mathrm{~km} / \mathrm{hr}$
11.(a) In a box containing 24 identical balls, 9 are blue, 6 red, 4 are white and 5 are violet. If a ball is randomly selected and replaced, then a second ball is taken, find the probability that:
(i) both balls are red.
(ii) both are of different colours
(iii) they are red and a blue ball
(iv) both balls are violet.

GET MORE ON SCHOOL PORTAL NG (https://schoolportalng.com)

(b) Find the total surface area of a cylinder of diameter 7 cm and height 15 cm .

Solution

a. (i) $\quad P($ both balls are red $)=6 / 24 \times 8 / 24$

$$
=1 / 16
$$

(ii) $\quad \mathrm{P}($ both are of different colours $)=$

$$
1-(1 / 24 \times 9 / 24+6 / 24 \times 6 / 24 \times 4 / 24 \times 4 / 24+5 / 24 \times 5 / 24)
$$

$$
=\underline{209}
$$

(iii) $\quad \mathrm{P}$ (they are a red and a blue) $=6 / 24 \times 9 / 24+9 / 24 \times 6 / 24$

$$
=3 / 16
$$

(iv) $\quad \mathrm{P}($ both balls are violet $)=5 / 24 \times 5 / 24$

$$
=\frac{25}{576}
$$

b. Area of the two circular faces $=2 \times \pi \times(7 / 2)^{2}$

$$
=49 / 2 \pi \mathrm{~cm}^{2}
$$

curved surface area $=(2 \pi \times 7 / 2 \times 15)$

$$
=105 \pi \mathrm{~cm}^{2}
$$

total surface area $=\left(\frac{49}{2} \pi+105 \pi\right) \mathrm{cm}^{2}$

$$
=\frac{259}{2} \pi
$$

$$
=406.89 \mathrm{~cm}^{2} \approx 407 \mathrm{~cm}^{2}
$$

12.(a) The table below is the distribution of the weekly earnings (in thousands of naira) of some workers in a poultry farm.

Amount in N1000	10	12	15	18	20
No. of Workers	8	20	6	4	2

(a) How many workers are on the farm?
(b) Calculate the mean, mode and median of their weekly earnings.
(b) Find the rate of 58 kobo in the naira in a property of rateable value of N 4800.00
(c) A trader sold an article for $\mathcal{N} 18,500$ and make a gain of $2 \frac{1}{2} \%$. How much must he sell it to make a loss of $12 \frac{1}{2} \%$?

GET MORE ON SCHOOL PORTAL NG (https://schoolportalng.com)

Solution
(a) (a) Total number of workers $=8+20+6+4+2$

$$
=40
$$

(b) Mean earning $=\frac{522}{40} \times 1000$

$$
=\mathrm{N} 13,050.00
$$

Median $=\mathrm{N} 24,000 \div 2$
$=\mathrm{N} 12,000.00$
Mode $=$ N12,000.00
(b) Kobo rate: $\mathrm{N} 58 \times 48000$ 100

$$
=\text { N } 2784.00
$$

(c) $2 \frac{1}{2} \%$ of $18,500 \Rightarrow \frac{102.5}{100} x=18,500$

$$
=18,048.78
$$

$$
\therefore \text { Selling price }=\frac{87.5}{100} \times 18048.78
$$

$$
=15,792.68
$$

ALITER
For every N 100 cost price, the selling price was N 102.50 i.e. N 102.50 selling price required N 100 cost price. Then 18500×100

$$
\begin{aligned}
& 102.5 \\
& =\text { N } 15792.68
\end{aligned}
$$

13(a) A man took a loan of $\mathrm{N} 330,000.00$ for 1 year at 15% per annum, deducted monthly in 11 equal installments, January to November 2009. Calculate the:
(i) total interest
(ii) monthly deduction from his salary
(b) A company's capital consist of $1,800,000$ ordinary shares of 40 kobo each and 160,000 preference shares of 1.50 each paying $7 \frac{1}{2} \%$. If it pays 8% on the ordinary shares, what is the profit for the year?

Solution

(a)(i) Total interest $\frac{15}{100} \times 330,000$

$$
=49,500.00
$$

(ii) Total amount $=\mathrm{N} 330,000+\mathrm{N} 49,500$

$$
=379,500
$$

monthly deduction from his salary for 11 months equally will be $\mathbf{N} \underline{379,500}$

GET MORE ON SCHOOL PORTAL NG (https://schoolportalng.com)

$$
=\mathrm{N} 34,500.00
$$

(b) Nominal value of the ordinary shares $=1,800,000 \times 40$ kobo

$$
\begin{aligned}
& =N 720,000 \\
\text { Profit on ordinary share } & =\underline{8} \times 720,00 \\
& 100 \\
& =\mathrm{N} 57,600
\end{aligned}
$$

Nominal value of the preference share $=\mathrm{N} 160,000 \times 1.50=\mathrm{N} 240,00$

$$
\begin{aligned}
\text { Profit on the preference share } & =\frac{15}{200} \times 240,000 \\
& =N 18,000
\end{aligned}
$$

\therefore Total profit for the year $=N 57,600+N 18,000$

$$
=\mathrm{N} 75,600.00
$$

14.(a) In a bankruptcy a creditor with a claim of $\mathrm{N} 80,000.00$ was paid $\mathrm{N} 65,000.00$. How much to the nearest naira will a creditor for $\mathrm{N} 200,000.00$ be paid?
(b) The compound interest on a sum of money invested at 12% for 3 years was N40,380.00. How much was invested?
(c) Aki and Pawpaw own a shop. The ratio of Aki's share to Pawpaw's is 3:2. Later pawpaw sells $2 / 3$ of his shares to Aki for $\mathrm{N} 82,000,000$. Find the value of the shop.

Solution

(a) Dividend $=\frac{65000}{80000} \times 100$

$$
=81.25 \text { kobo in the naira }
$$

Therefore creditor for $\mathrm{N} 200,00=\underline{200,000 \times 81.25}$

$$
=\mathrm{N} 162,500.00
$$

(b) Compound interest: $\mathrm{A}=\mathrm{P}+40380$

$$
\begin{aligned}
& \mathrm{P}+40380=\mathrm{P}(1+\underline{12})^{3} \\
& \mathrm{P}+40380=(1.404928) \mathrm{P} \\
& 0.404928 \mathrm{P}=40380
\end{aligned}
$$

\therefore Principal amount invested $=\mathrm{N} 99721.34$
(c) Pawpaw's share $=\frac{8200 \times 5}{2}$

GET MORE ON SCHOOL PORTAL NG (https://schoolportalng.com)

$$
=\mathrm{N} 205,000
$$

Therefore the value of the shop will be $\underline{205,000 \times 5}$

$$
=\mathrm{N} 512,500.00
$$

15.(a) Madu bought 50008% preference shares nominal value N 1.80 at N 2.10 each.
(i) How much did he pay for the shares?
(ii) What is his annual income if he pays a tax at 20%.
(b) A sales agent is paid $\mathrm{N} 10,000$ per month and in addition $71 / 2 \%$ commission on all sales. If in a particular year, he sold goods worth $\$ 1,500,000$. Calculate his:
(i) annual income before tax, and
(ii) average monthly pay when a tax of 15% on his annual salary is made.

Solution

(a) (i) Amount paid for the shares $=\mathrm{N} 2.10 \times 5,000$

$$
=\mathrm{N} 10,500
$$

(ii) Dividend on the shares $=\frac{1.80 \times 5000 \times 8}{100}$

$$
=\mathrm{N} 720.00
$$

$$
\begin{aligned}
& \operatorname{Tax}=\frac{21 \times 720}{100} \\
& =\text { N } 144
\end{aligned}
$$

Income $=\mathrm{N} 720-144=\mathrm{N} 576.00$
(b) (i) Commission received $\frac{7.5}{100} \times 1,500,000$

$$
=112,500
$$

Total income before tax $=\mathrm{N} 120,000+\mathrm{N} 112,500$

$$
=\mathrm{N} 232,500
$$

(ii) Annual salary: $\mathrm{N} 10,000 \times 12=\mathrm{N} 120,000$

Annual tax: $\frac{15}{100} \times 120,000=\mathrm{N} 18,000$
Total annual salary $=\mathrm{N} 232,500-\mathrm{N} 18,000$

$$
=\mathrm{N} 214,500
$$

Average monthly pay: $\frac{\mathrm{N} 214,500}{12}$

