BASIC OPERATION OF INTEGERS

Definition of Integer

An integer is any positive or negative whole number

 

Example:

Simplify the following

(+8) + (+3)      (ii) (+9) –  (+4)

Solution

(+8) + (+3) = +11                   (ii) (+9) – (+4) = 9-4 = +5 or 5

 

Evaluation

Simplify the following

(+12) –(+7)                (ii) 7-(-3)-(-2)

 

Indices

The plural of index is indices

10 x 10 x 10= 103 in index form, where 3 is the index or power of 10. P5=p x pxpxpxp. 5 is the power or index of p in the expression P5.

 

Laws of Indices

  1. Multiplication law:

ax x ay = ax+y

E.g. a5xa3=a x a x a x a x a x a x a x a =a8

y1 x y4=y 1+4

= y5

a3  x a5 = a3 + 5 = a8

4c4 x 3c2

= 4 x 3 x c4 x c2 =12 x c4+2=12c6

 

Class work

Simplify the following

(a) 103 x 104              (b) 3 x 106 x 4 x 102       (c) p3 x p          (d) 4f3 x 5f7        

 

Division law

(1)  ax ÷ ay = ax ÷ ay = ax-y

 

Example

Simplify the following

  • a7÷a3=a x a x a x a x a x a x a ÷ a x a x a

a7-3=a4

(2) 106÷103=106÷103=106-3=103

(3) 10a7÷2a2=10a7÷2a2=5a7-2=5a5

 

Class work

Simplify the following

  1. 105÷103 2.  51m9÷3m              (3) 8×109÷4×106            

 

Zero indexes

ax ÷ ax =1

 

By division law ax-x=a0

a0=1

E.g. 1000 =1

500=1

 

Negative index

a0 ÷ ax = 1/ax

But by division law, a0-x=a-x

Therefore, a-x=1/ax

 

Example

  1. Simplify (i) b-2 (ii) 2-3

Solution

b-2 = 1/ b2               (ii) 2-3 = 1/23     = 1/2x2x2 = 1/8

 

Class work

(1) 10-2       (2) d0 x d4 x d-2                (3) a-3÷a-5         (4)  (1/4)-2

(5)     [am]n = amxn = amn.

[Power of index]

E.g. [a2]4= x a2 x a2 x a2 = a x a x a x a x a x a x a x a=a8

Therefore. a2×4=a8.

(6)   [mn] a=m ax na = mana. e.g. [4+2x] 2=42+22xx2 =

16+4x2=4[4+1xx2] =4[4+x2].

7      Fractional indexes

am/n   =a1/n xm=n√ am

 

Example

(a1/2)2 =a2/2=a1=a

(√a)2=√a x √a =√a x a=√a2=ae.g321/5=5

√321

  1. 323/5 = 5√25×3 = 23 =2x2x2 = 8
  2. 272/3=3√272 = 32 = 3x3x3 = 9
  3. 4-3/2 = √1/43= 1/23
  4. (0001)3

=1×10-3

=(10-3)3=10-3×3=10-9

=        1           .

1000000000

=0.000000001

 

  1. (am)p/q=amp=√(a)p

e.g. (162)3/4=√ (162)3

= (22)3

 

(4)3=4x4x4 = 64

 

  1. Equator of power for equal base

Ax=Ay That is x = y

 

WEEKEND ASSIGNMENT

  1. Simplify (+13) – (+6)

(a)7  (b) -7   (c) 19    (d) 8

  1. Simplify (+11) – (+6)- (-3)

(a)7   (b)8      (c)9     (d)10

  1. Simplify 5x3 x 4x7 (a) 20x4 (b) 20x10            (c) 20x7           (d) 57x10
  2. Simplify 10a8 ÷ 5a6 (a) 2a2 (b) 50a2 (c) 2a14                (d) 2a48
  3. Simplify r7 ÷ r7 (a) 0 (b) 1     (c) r14    (d) 2r7

 

THEORY

  1. Simplify
  • 5y5 x 3y3
  • 24×8

6x

  1. Simplify (1/2)-3

 

See also

WEIGHT

VOLUME OF CYLINDER

AREA OF RIGHT ANGLED TRIANGLE

PROFIT AND LOSS PERCENT

SIMPLE INTERREST

Get Fully Funded Scholarships

Free Visa, Free Scholarship Abroad

           Click Here to Apply

Acadlly