Definition of Integer
An integer is any positive or negative whole number
Â
Example:
Simplify the following
(+8) + (+3)Â Â Â Â Â (ii) (+9) –Â (+4)
Solution
(+8) + (+3) = +11Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â (ii) (+9) – (+4) = 9-4 = +5 or 5
Â
Evaluation
Simplify the following
(+12) –(+7)               (ii) 7-(-3)-(-2)
Â
Indices
The plural of index is indices
10 x 10 x 10= 103 in index form, where 3 is the index or power of 10. P5=p x pxpxpxp. 5 is the power or index of p in the expression P5.
Â
Laws of Indices
- Multiplication law:
ax x ay = ax+y
E.g. a5xa3=a x a x a x a x a x a x a x a =a8
y1 x y4=y 1+4
= y5
a3Â x a5 = a3 + 5 = a8
4c4 x 3c2
= 4 x 3 x c4 x c2 =12 x c4+2=12c6
Â
Class work
Simplify the following
(a) 103 x 104             (b) 3 x 106 x 4 x 102      (c) p3 x p         (d) 4f3 x 5f7       Â
Â
Division law
(1) ax ÷ ay = ax ÷ ay = ax-y
Â
Example
Simplify the following
- a7÷a3=a x a x a x a x a x a x a ÷ a x a x a
a7-3=a4
(2) 106÷103=106÷103=106-3=103
(3) 10a7÷2a2=10a7÷2a2=5a7-2=5a5
Â
Class work
Simplify the following
- 105÷103 2. 51m9÷3m            (3) 8×109÷4×106           Â
Zero indexes
ax ÷ ax =1
Â
By division law ax-x=a0
a0=1
E.g. 1000 =1
500=1
Â
Negative index
a0 ÷ ax = 1/ax
But by division law, a0-x=a-x
Therefore, a-x=1/ax
Example
- Simplify (i) b-2 (ii) 2-3
Solution
b-2 = 1/ b2Â Â Â Â Â Â Â Â Â Â Â Â Â (ii) 2-3 = 1/23Â Â Â Â = 1/2x2x2 = 1/8
Â
Class work
(1) 10-2      (2) d0 x d4 x d-2               (3) a-3÷a-5       (4) (1/4)-2
(5)Â Â Â Â [am]n = amxn = amn.
[Power of index]
E.g. [a2]4= x a2 x a2 x a2 = a x a x a x a x a x a x a x a=a8
Therefore. a2×4=a8.
(6)Â Â [mn] a=m ax na = mana. e.g. [4+2x] 2=42+22xx2 =
16+4x2=4[4+1xx2] =4[4+x2].
7Â Â Â Â Â Fractional indexes
am/n  =a1/n xm=n√ am
Example
(a1/2)2 =a2/2=a1=a
(√a)2=√a x √a =√a x a=√a2=ae.g321/5=5
√321
- 323/5 = 5√25×3 = 23 =2x2x2 = 8
- 272/3=3√272 = 32 = 3x3x3 = 9
- 4-3/2 = √1/43= 1/23
- (0001)3
=1×10-3
=(10-3)3=10-3×3=10-9
=Â Â Â Â Â Â Â 1Â Â Â Â Â Â Â Â Â Â .
1000000000
=0.000000001
- (am)p/q=amp=√(a)p
e.g. (162)3/4=√ (162)3
= (22)3
(4)3=4x4x4 = 64
Â
- Equator of power for equal base
Ax=Ay That is x = y
WEEKEND ASSIGNMENT
- Simplify (+13) – (+6)
(a)7Â (b) -7Â Â (c) 19Â Â Â (d) 8
- Simplify (+11) – (+6)- (-3)
(a)7Â Â (b)8Â Â Â Â Â (c)9 Â Â Â (d)10
- Simplify 5x3 x 4x7 (a) 20x4 (b) 20x10Â Â Â Â Â Â Â Â Â Â Â (c) 20x7 Â Â Â Â Â Â Â Â Â (d) 57x10
- Simplify 10a8 ÷ 5a6 (a) 2a2 (b) 50a2 (c) 2a14               (d) 2a48
- Simplify r7 ÷ r7 (a) 0 (b) 1    (c) r14   (d) 2r7
Â
THEORY
- Simplify
- 5y5 x 3y3
- 24×8
6x
- Simplify (1/2)-3
See also